BITT POLYTECHNIC, RANCHI DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING
 Communication Systems

Faculty- Anant Kumar

Narrowband Frequency Modulation:

Consider equation above,

$$
\begin{aligned}
& s(t)=A_{c} \cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right)= \\
& A_{c} \cos 2 \pi f_{c} t \cdot \cos \left(\beta \sin \left(2 \pi f_{m} t\right)\right)-A_{c} \sin 2 \pi f_{c} t \cdot \sin \left(\beta \sin 2 \pi f_{m} t\right)
\end{aligned}
$$

β Is small compared to one radian, we may approximate

$$
\begin{aligned}
& \left.\cos \left(\beta \sin 2 \pi f_{m} t\right)\right) \approx 1 \\
& \quad \text { and } \\
& \sin \left(\beta \sin \left(2 \pi f_{m} t\right) \approx \beta \sin \left(2 \pi f_{m} t\right)\right.
\end{aligned}
$$

Hence equation 2.18 becomes

Equation 2.19 can be implemented as follows (Fig2.4).

Method for generating narrowband FM signal.

Ideally, an FM signal has a constant envelope and for the case of a sinusoidal modulating frequency $\mathrm{f} f_{m}$, the angle $\theta_{i}(t)$ is also sinusoidal with the same frequency.

However the modulated signal produced by the narrowband modulator of Fig differs from this ideal condition in two fundamental respects:

- The envelope contains residue amplitude modulation and therefore varies with time.
- For a sinusoidal modulating the angle $\theta_{i}(t)$ Contains harmonic distortion in the form of third and higher-order harmonic of the modulation frequency f_{m}.

However, if β (modulation index) is restricted to $\beta \leq 0.3$ radians, the effect of residual AM and harmonic are limited to negligible levels.

Returning to equation 2.19(pp.127),
$s(t)=A_{c} \cos \left(2 \pi f_{c} t\right)-\beta A_{c} \sin \left(2 \pi f_{c} t\right) \cdot \sin \left(2 \pi f_{m}\right) t$

Narrowband FM signal

$$
\begin{aligned}
& s(t)=A \cos 2 \pi f t_{c}+{ }^{1}{\underset{2}{2}}_{\beta}^{\beta}\left[\cos 2 \pi\left(f_{c}+f_{m}\right) t-\cos 2 \pi\left(f_{c-n} f\right) t\right] \\
& \text { Narrowband FM signal }
\end{aligned}
$$

Consider an AM signal equation
$s(t)=A \cos \left(2 \pi f t_{c}\right)+\frac{M A_{c}}{2}\left[\cos 2 \pi\left(f+f_{c}\right) t+\underset{m}{\cos 2 \pi(f-f) t}\right]_{c}{ }_{m}$

Comparing equation, we see that in the case of sinusoidal modulation, the Basic difference between an AM signal \$ a narrowband FM signal is that the algebraic sign of the lower side frequency in the narrowband FM is reversed.
Thus, a narrowband FM signal requires essentially the same transmission band width (i.e. $2 f_{m}$) as the AM signal.

Wideband Frequency Modulation:

The FM signal itself is given by
$s(t)=A_{c} \cos \left(2 \pi f_{c} t+\beta \sin 2 \pi f_{m} t\right)$
We wish to determine the spectrum of the single tone FM signal above, for an arbitrary value of the modulation index β.
Assuming $\beta>1$ (wideband frequency modulation we may write the above FM signal as $\left.\mathrm{s}(\mathrm{t})=\mathrm{A}_{\mathrm{c}}\left[\operatorname{cosw}_{\mathrm{c}} t \cdot \cos \beta \operatorname{sinw}_{\mathrm{m}} t\right)-\operatorname{sinw}_{\mathrm{c}} t \cdot \sin \left(\beta \sin \mathrm{w}_{\mathrm{m}} t\right)\right]$

- $\mathrm{S}(\mathrm{t})$ is no periodic , $\quad f_{c}$ is an integral multiple of f_{m}
- We assume that f_{c} is large enough compared to the bandwidth of the FM signal.

We know that:
$\cos \left(\beta \sin \omega_{m} t\right)=\mathrm{J}_{0}(\beta)+\quad \sum_{\text {neven }}^{\infty} 2 J_{n}(\beta) \cos n \omega_{m} t$
$\operatorname{Sin}\left(\beta \sin \omega_{m} t\right)=\sum 2 J_{n}(\beta) \sin n \omega_{m} t^{t_{\text {nodd }}}$
Where n is positive and $J_{n}(\beta)$ are coefficient of Bessel functions of the first kind, of order n argument β.
Figure below shows the Bessel function $J_{n}(\beta)$ versus modulation index β for different positive integer value of n.

Bessel function for $n=0$ to $n=6$

We can develop further insight into the behavior of the Bessel function $J_{n}(\beta)$, (1) $J_{n}(\beta)=(-1)^{n} J_{-n}(\beta) \quad$ For all n both positive \& negative.
(2) For small values of the modulation index β, we have
$J_{0}(\beta)=1$
$J_{1}(\beta)=\frac{\beta}{2}$
$J_{n}(\beta)=0 \quad n>2$
(3) $\left.\sum_{n=-\infty}^{\infty} J{ }_{n}^{2} \beta\right)=1$

Substituting equations and expanding products of sines and cosines finally yields:

$$
\begin{aligned}
& s(t)=A_{c} J_{0} \beta \cos \omega_{c} t \\
& +\sum_{\text {nodd }}^{\infty} A_{c} J_{n}(\beta)\left[\cos \left(\omega_{c}+n \omega_{m}\right) t-\cos \left(\omega_{c}-n \omega_{m}\right) t\right] \\
& +\sum_{\text {neven }}^{\infty} A_{c} J_{n}(\beta)\left[\cos \left(\omega_{c}+n \omega_{m}\right) t+\cos \left(\omega_{c}-n \omega_{m}\right) t\right] \\
& s(t)=A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(\omega_{c}+n \omega_{m}\right) t \\
&
\end{aligned}
$$

$s(t)$ is the desired form for the Fourier series representation of the single tone FM signal $\mathrm{s}(\mathrm{t})$ for an arbitrary value of β.

The discrete spectrum of $s(t)$ is obtained by taking the Fourier transform of both sides of equation $2.15 \&$ we have:

$$
s(f)=\frac{A_{c}}{2_{n=-\infty}} \sum^{\infty} J_{n}(\beta)\left[\delta\left(f-\left(f_{c}+n f_{m}\right)\right)+5\left(f+\left(f_{c}+n f_{m}\right)\right)\right]
$$

FM signal

From 2.15\& 2.16 we may make the following observation:
(1) The spectrum of an FM signal contain a carrier component and an infinite set of side frequencies located symmetrically on either side of the carrier at frequency separations $\mathrm{f} f_{m}, 2 f_{m}, 3 f_{m}$ \qquad (note in AM system a sinusoidal Modulating signal given rise to only one pair of side frequencies.
(2) For the special case of β small compared to unity ,only the Bessel coefficients $\mathrm{J}_{0}(\beta)$ and $\mathrm{J}_{1}(B)$ have significant values, so that the FM signal is effectively Composed of a carrier and a single pair of side frequency $\quad f_{c} \pm f_{m}$.
at
This situation corresponds to the special case of narrowband FM that was
considered earlier.

$\left[\right.$ Note: $\left.J_{0}(\beta)=1 \quad, J_{1}(\beta)=\underline{\beta}\right]$

